Logo Search packages:      
Sourcecode: kat version File versions  Download package

cppsqlite3.cpp

////////////////////////////////////////////////////////////////////////////////
// CppSQLite3 - A C++ wrapper around the SQLite3 embedded database library.
//
// Copyright (c) 2004 Rob Groves. All Rights Reserved. rob.groves@btinternet.com
//
// Permission to use, copy, modify, and distribute this software and its
// documentation for any purpose, without fee, and without a written
// agreement, is hereby granted, provided that the above copyright notice,
// this paragraph and the following two paragraphs appear in all copies,
// modifications, and distributions.
//
// IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT,
// INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST
// PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION,
// EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF
// ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS". THE AUTHOR HAS NO OBLIGATION
// TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
//
// V3.0           03/08/2004  -Initial Version for sqlite3
//
// V3.1           16/09/2004  -Implemented getXXXXField using sqlite3 functions
//                                  -Added CppSQLiteDB3::tableExists()
////////////////////////////////////////////////////////////////////////////////

#include "cppsqlite3.h"
#include <cstdlib>
#include <kdebug.h>
// Named constant for passing to CppSQLite3Exception when passing it a string
// that cannot be deleted.
static const bool DONT_DELETE_MSG=false;

////////////////////////////////////////////////////////////////////////////////
// Prototypes for SQLite functions not included in SQLite DLL, but copied below
// from SQLite encode.c
////////////////////////////////////////////////////////////////////////////////
int sqlite3_encode_binary(const unsigned char *in, int n, unsigned char *out);
int sqlite3_decode_binary(const unsigned char *in, unsigned char *out);

////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////

CppSQLite3Exception::CppSQLite3Exception(const int nErrCode,
                                                      char* szErrMess,
                                                      bool bDeleteMsg/*=true*/) :
                                                      mnErrCode(nErrCode)
{
      mpszErrMess = sqlite3_mprintf("%s[%d]: %s",
                                                errorCodeAsString(nErrCode),
                                                nErrCode,
                                                szErrMess ? szErrMess : "");

      if (bDeleteMsg && szErrMess)
      {
            sqlite3_free(szErrMess);
      }
}


CppSQLite3Exception::CppSQLite3Exception(const CppSQLite3Exception&  e) :
                                                      mnErrCode(e.mnErrCode)
{
      mpszErrMess = 0;
      if (e.mpszErrMess)
      {
            mpszErrMess = sqlite3_mprintf("%s", e.mpszErrMess);
      }
}


const char* CppSQLite3Exception::errorCodeAsString(int nErrCode)
{
      switch (nErrCode)
      {
            case SQLITE_OK          : return "SQLITE_OK";
            case SQLITE_ERROR       : return "SQLITE_ERROR";
            case SQLITE_INTERNAL    : return "SQLITE_INTERNAL";
            case SQLITE_PERM        : return "SQLITE_PERM";
            case SQLITE_ABORT       : return "SQLITE_ABORT";
            case SQLITE_BUSY        : return "SQLITE_BUSY";
            case SQLITE_LOCKED      : return "SQLITE_LOCKED";
            case SQLITE_NOMEM       : return "SQLITE_NOMEM";
            case SQLITE_READONLY    : return "SQLITE_READONLY";
            case SQLITE_INTERRUPT   : return "SQLITE_INTERRUPT";
            case SQLITE_IOERR       : return "SQLITE_IOERR";
            case SQLITE_CORRUPT     : return "SQLITE_CORRUPT";
            case SQLITE_NOTFOUND    : return "SQLITE_NOTFOUND";
            case SQLITE_FULL        : return "SQLITE_FULL";
            case SQLITE_CANTOPEN    : return "SQLITE_CANTOPEN";
            case SQLITE_PROTOCOL    : return "SQLITE_PROTOCOL";
            case SQLITE_EMPTY       : return "SQLITE_EMPTY";
            case SQLITE_SCHEMA      : return "SQLITE_SCHEMA";
            case SQLITE_TOOBIG      : return "SQLITE_TOOBIG";
            case SQLITE_CONSTRAINT  : return "SQLITE_CONSTRAINT";
            case SQLITE_MISMATCH    : return "SQLITE_MISMATCH";
            case SQLITE_MISUSE      : return "SQLITE_MISUSE";
            case SQLITE_NOLFS       : return "SQLITE_NOLFS";
            case SQLITE_AUTH        : return "SQLITE_AUTH";
            case SQLITE_FORMAT      : return "SQLITE_FORMAT";
            case SQLITE_RANGE       : return "SQLITE_RANGE";
            case SQLITE_ROW         : return "SQLITE_ROW";
            case SQLITE_DONE        : return "SQLITE_DONE";
            case CPPSQLITE_ERROR    : return "CPPSQLITE_ERROR";
            default: return "UNKNOWN_ERROR";
      }
}


CppSQLite3Exception::~CppSQLite3Exception()
{
    if (mpszErrMess)
      {
            sqlite3_free(mpszErrMess);
            mpszErrMess = 0;
      }
}


////////////////////////////////////////////////////////////////////////////////

CppSQLite3Buffer::CppSQLite3Buffer()
{
      mpBuf = 0;
}


CppSQLite3Buffer::~CppSQLite3Buffer()
{
      clear();
}


void CppSQLite3Buffer::clear()
{
      if (mpBuf)
      {
            sqlite3_free(mpBuf);
            mpBuf = 0;
      }

}


const char* CppSQLite3Buffer::format(const char* szFormat, ...)
{
      clear();
      va_list va;
      va_start(va, szFormat);
      mpBuf = sqlite3_vmprintf(szFormat, va);
      va_end(va);
      return mpBuf;
}


////////////////////////////////////////////////////////////////////////////////

CppSQLite3Binary::CppSQLite3Binary() :
                                    mpBuf(0),
                                    mnBinaryLen(0),
                                    mnBufferLen(0),
                                    mnEncodedLen(0),
                                    mbEncoded(false)
{
}


CppSQLite3Binary::~CppSQLite3Binary()
{
      clear();
}


void CppSQLite3Binary::setBinary(const unsigned char* pBuf, int nLen)
{
      mpBuf = allocBuffer(nLen);
      memcpy(mpBuf, pBuf, nLen);
}


void CppSQLite3Binary::setEncoded(const unsigned char* pBuf)
{
      clear();

      mnEncodedLen = strlen((const char*)pBuf);
      mnBufferLen = mnEncodedLen + 1; // Allow for NULL terminator

      mpBuf = (unsigned char*)malloc(mnBufferLen);

      if (!mpBuf)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Cannot allocate memory",
                                                DONT_DELETE_MSG);
      }

      memcpy(mpBuf, pBuf, mnBufferLen);
      mbEncoded = true;
}


const unsigned char* CppSQLite3Binary::getEncoded()
{
      if (!mbEncoded)
      {
            unsigned char* ptmp = (unsigned char*)malloc(mnBinaryLen);
            memcpy(ptmp, mpBuf, mnBinaryLen);
            mnEncodedLen = sqlite3_encode_binary(ptmp, mnBinaryLen, mpBuf);
            free(ptmp);
            mbEncoded = true;
      }

      return mpBuf;
}


const unsigned char* CppSQLite3Binary::getBinary()
{
      if (mbEncoded)
      {
            // in/out buffers can be the same
            mnBinaryLen = sqlite3_decode_binary(mpBuf, mpBuf);

            if (mnBinaryLen == -1)
            {
                  throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                      "Cannot decode binary",
                                                      DONT_DELETE_MSG);
            }

            mbEncoded = false;
      }

      return mpBuf;
}


int CppSQLite3Binary::getBinaryLength()
{
      getBinary();
      return mnBinaryLen;
}


unsigned char* CppSQLite3Binary::allocBuffer(int nLen)
{
      clear();

      // Allow extra space for encoded binary as per comments in
      // SQLite encode.c See bottom of this file for implementation
      // of SQLite functions use 3 instead of 2 just to be sure ;-)
      mnBinaryLen = nLen;
      mnBufferLen = 3 + (257*nLen)/254;

      mpBuf = (unsigned char*)malloc(mnBufferLen);

      if (!mpBuf)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Cannot allocate memory",
                                                DONT_DELETE_MSG);
      }

      mbEncoded = false;

      return mpBuf;
}


void CppSQLite3Binary::clear()
{
      if (mpBuf)
      {
            mnBinaryLen = 0;
            mnBufferLen = 0;
            free(mpBuf);
            mpBuf = 0;
      }
}


////////////////////////////////////////////////////////////////////////////////

CppSQLite3Query::CppSQLite3Query()
{
      mpVM = 0;
      mbEof = true;
      mnCols = 0;
      mbOwnVM = false;
}


CppSQLite3Query::CppSQLite3Query(const CppSQLite3Query& rQuery)
{
      mpVM = rQuery.mpVM;
      // Only one object can own the VM
      const_cast<CppSQLite3Query&>(rQuery).mpVM = 0;
      mbEof = rQuery.mbEof;
      mnCols = rQuery.mnCols;
      mbOwnVM = rQuery.mbOwnVM;
}


CppSQLite3Query::CppSQLite3Query(sqlite3* pDB,
                                          sqlite3_stmt* pVM,
                                          bool bEof,
                                          bool bOwnVM/*=true*/)
{
      mpDB = pDB;
      mpVM = pVM;
      mbEof = bEof;
      mnCols = sqlite3_column_count(mpVM);
      mbOwnVM = bOwnVM;
}


CppSQLite3Query::~CppSQLite3Query()
{
      try
      {
            finalize();
      }
      catch (...)
      {
      }
}


CppSQLite3Query& CppSQLite3Query::operator=(const CppSQLite3Query& rQuery)
{
      try
      {
            finalize();
      }
      catch (...)
      {
      }
      mpVM = rQuery.mpVM;
      // Only one object can own the VM
      const_cast<CppSQLite3Query&>(rQuery).mpVM = 0;
      mbEof = rQuery.mbEof;
      mnCols = rQuery.mnCols;
      mbOwnVM = rQuery.mbOwnVM;
      return *this;
}


int CppSQLite3Query::numFields()
{
      checkVM();
      return mnCols;
}


const char* CppSQLite3Query::fieldValue(int nField)
{
      checkVM();

      if (nField < 0 || nField > mnCols-1)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Invalid field index requested",
                                                DONT_DELETE_MSG);
      }

      return (const char*)sqlite3_column_text(mpVM, nField);
}


const char* CppSQLite3Query::fieldValue(const char* szField)
{
      int nField = fieldIndex(szField);
      return (const char*)sqlite3_column_text(mpVM, nField);
}


int CppSQLite3Query::getIntField(int nField, int nNullValue/*=0*/)
{
      if (fieldDataType(nField) == SQLITE_NULL)
      {
            return nNullValue;
      }
      else
      {
            return sqlite3_column_int(mpVM, nField);
      }
}


int CppSQLite3Query::getIntField(const char* szField, int nNullValue/*=0*/)
{
      int nField = fieldIndex(szField);
      return getIntField(nField, nNullValue);
}


double CppSQLite3Query::getFloatField(int nField, double fNullValue/*=0.0*/)
{
      if (fieldDataType(nField) == SQLITE_NULL)
      {
            return fNullValue;
      }
      else
      {
            return sqlite3_column_double(mpVM, nField);
      }
}


double CppSQLite3Query::getFloatField(const char* szField, double fNullValue/*=0.0*/)
{
      int nField = fieldIndex(szField);
      return getFloatField(nField, fNullValue);
}


const char* CppSQLite3Query::getStringField(int nField, const char* szNullValue/*=""*/)
{
      if (fieldDataType(nField) == SQLITE_NULL)
      {
            return szNullValue;
      }
      else
      {
            return (const char*)sqlite3_column_text(mpVM, nField);
      }
}


const char* CppSQLite3Query::getStringField(const char* szField, const char* szNullValue/*=""*/)
{
      int nField = fieldIndex(szField);
      return getStringField(nField, szNullValue);
}


const unsigned char* CppSQLite3Query::getBlobField(int nField, int& nLen)
{
      checkVM();

      if (nField < 0 || nField > mnCols-1)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Invalid field index requested",
                                                DONT_DELETE_MSG);
      }

      nLen = sqlite3_column_bytes(mpVM, nField);
      return (const unsigned char*)sqlite3_column_blob(mpVM, nField);
}


const unsigned char* CppSQLite3Query::getBlobField(const char* szField, int& nLen)
{
      int nField = fieldIndex(szField);
      return getBlobField(nField, nLen);
}


bool CppSQLite3Query::fieldIsNull(int nField)
{
      return (fieldDataType(nField) == SQLITE_NULL);
}


bool CppSQLite3Query::fieldIsNull(const char* szField)
{
      int nField = fieldIndex(szField);
      return (fieldDataType(nField) == SQLITE_NULL);
}


int CppSQLite3Query::fieldIndex(const char* szField)
{
      checkVM();

      if (szField)
      {
            for (int nField = 0; nField < mnCols; nField++)
            {
                  const char* szTemp = sqlite3_column_name(mpVM, nField);

                  if (strcmp(szField, szTemp) == 0)
                  {
                        return nField;
                  }
            }
      }

      throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                          "Invalid field name requested",
                                          DONT_DELETE_MSG);
}


const char* CppSQLite3Query::fieldName(int nCol)
{
      checkVM();

      if (nCol < 0 || nCol > mnCols-1)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Invalid field index requested",
                                                DONT_DELETE_MSG);
      }

      return sqlite3_column_name(mpVM, nCol);
}


const char* CppSQLite3Query::fieldDeclType(int nCol)
{
      checkVM();

      if (nCol < 0 || nCol > mnCols-1)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Invalid field index requested",
                                                DONT_DELETE_MSG);
      }

      return sqlite3_column_decltype(mpVM, nCol);
}


int CppSQLite3Query::fieldDataType(int nCol)
{
      checkVM();

      if (nCol < 0 || nCol > mnCols-1)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Invalid field index requested",
                                                DONT_DELETE_MSG);
      }

      return sqlite3_column_type(mpVM, nCol);
}


bool CppSQLite3Query::eof()
{
      checkVM();
      return mbEof;
}


void CppSQLite3Query::nextRow()
{
      checkVM();

      int nRet = sqlite3_step(mpVM);

      if (nRet == SQLITE_DONE)
      {
            // no rows
            mbEof = true;
      }
      else if (nRet == SQLITE_ROW)
      {
            // more rows, nothing to do
      }
      else
      {
            nRet = sqlite3_finalize(mpVM);
            mpVM = 0;
            const char* szError = sqlite3_errmsg(mpDB);
            throw CppSQLite3Exception(nRet,
                                                (char*)szError,
                                                DONT_DELETE_MSG);
      }
}


void CppSQLite3Query::finalize()
{
      if (mpVM && mbOwnVM)
      {
            int nRet = sqlite3_finalize(mpVM);
            mpVM = 0;
            if (nRet != SQLITE_OK)
            {
                  const char* szError = sqlite3_errmsg(mpDB);
                  throw CppSQLite3Exception(nRet, (char*)szError, DONT_DELETE_MSG);
            }
      }
}


void CppSQLite3Query::checkVM()
{
      if (mpVM == 0)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Null Virtual Machine pointer",
                                                DONT_DELETE_MSG);
      }
}


////////////////////////////////////////////////////////////////////////////////

CppSQLite3Table::CppSQLite3Table()
{
      mpaszResults = 0;
      mnRows = 0;
      mnCols = 0;
      mnCurrentRow = 0;
}


CppSQLite3Table::CppSQLite3Table(const CppSQLite3Table& rTable)
{
      mpaszResults = rTable.mpaszResults;
      // Only one object can own the results
      const_cast<CppSQLite3Table&>(rTable).mpaszResults = 0;
      mnRows = rTable.mnRows;
      mnCols = rTable.mnCols;
      mnCurrentRow = rTable.mnCurrentRow;
}


CppSQLite3Table::CppSQLite3Table(char** paszResults, int nRows, int nCols)
{
      mpaszResults = paszResults;
      mnRows = nRows;
      mnCols = nCols;
      mnCurrentRow = 0;
}


CppSQLite3Table::~CppSQLite3Table()
{
      try
      {
            finalize();
      }
      catch (...)
      {
      }
}


CppSQLite3Table& CppSQLite3Table::operator=(const CppSQLite3Table& rTable)
{
      try
      {
            finalize();
      }
      catch (...)
      {
      }
      mpaszResults = rTable.mpaszResults;
      // Only one object can own the results
      const_cast<CppSQLite3Table&>(rTable).mpaszResults = 0;
      mnRows = rTable.mnRows;
      mnCols = rTable.mnCols;
      mnCurrentRow = rTable.mnCurrentRow;
      return *this;
}


void CppSQLite3Table::finalize()
{
      if (mpaszResults)
      {
            sqlite3_free_table(mpaszResults);
            mpaszResults = 0;
      }
}


int CppSQLite3Table::numFields()
{
      checkResults();
      return mnCols;
}


int CppSQLite3Table::numRows()
{
      checkResults();
      return mnRows;
}


const char* CppSQLite3Table::fieldValue(int nField)
{
      checkResults();

      if (nField < 0 || nField > mnCols-1)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Invalid field index requested",
                                                DONT_DELETE_MSG);
      }

      int nIndex = (mnCurrentRow*mnCols) + mnCols + nField;
      return mpaszResults[nIndex];
}


const char* CppSQLite3Table::fieldValue(const char* szField)
{
      checkResults();

      if (szField)
      {
            for (int nField = 0; nField < mnCols; nField++)
            {
                  if (strcmp(szField, mpaszResults[nField]) == 0)
                  {
                        int nIndex = (mnCurrentRow*mnCols) + mnCols + nField;
                        return mpaszResults[nIndex];
                  }
            }
      }

      throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                          "Invalid field name requested",
                                          DONT_DELETE_MSG);
}


int CppSQLite3Table::getIntField(int nField, int nNullValue/*=0*/)
{
      if (fieldIsNull(nField))
      {
            return nNullValue;
      }
      else
      {
            return atoi(fieldValue(nField));
      }
}


int CppSQLite3Table::getIntField(const char* szField, int nNullValue/*=0*/)
{
      if (fieldIsNull(szField))
      {
            return nNullValue;
      }
      else
      {
            return atoi(fieldValue(szField));
      }
}


double CppSQLite3Table::getFloatField(int nField, double fNullValue/*=0.0*/)
{
      if (fieldIsNull(nField))
      {
            return fNullValue;
      }
      else
      {
            return atof(fieldValue(nField));
      }
}


double CppSQLite3Table::getFloatField(const char* szField, double fNullValue/*=0.0*/)
{
      if (fieldIsNull(szField))
      {
            return fNullValue;
      }
      else
      {
            return atof(fieldValue(szField));
      }
}


const char* CppSQLite3Table::getStringField(int nField, const char* szNullValue/*=""*/)
{
      if (fieldIsNull(nField))
      {
            return szNullValue;
      }
      else
      {
            return fieldValue(nField);
      }
}


const char* CppSQLite3Table::getStringField(const char* szField, const char* szNullValue/*=""*/)
{
      if (fieldIsNull(szField))
      {
            return szNullValue;
      }
      else
      {
            return fieldValue(szField);
      }
}


bool CppSQLite3Table::fieldIsNull(int nField)
{
      checkResults();
      return (fieldValue(nField) == 0);
}


bool CppSQLite3Table::fieldIsNull(const char* szField)
{
      checkResults();
      return (fieldValue(szField) == 0);
}


const char* CppSQLite3Table::fieldName(int nCol)
{
      checkResults();

      if (nCol < 0 || nCol > mnCols-1)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Invalid field index requested",
                                                DONT_DELETE_MSG);
      }

      return mpaszResults[nCol];
}


void CppSQLite3Table::setRow(int nRow)
{
      checkResults();

      if (nRow < 0 || nRow > mnRows-1)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Invalid row index requested",
                                                DONT_DELETE_MSG);
      }

      mnCurrentRow = nRow;
}


void CppSQLite3Table::checkResults()
{
      if (mpaszResults == 0)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Null Results pointer",
                                                DONT_DELETE_MSG);
      }
}


////////////////////////////////////////////////////////////////////////////////

CppSQLite3Statement::CppSQLite3Statement()
{
      mpDB = 0;
      mpVM = 0;
}


CppSQLite3Statement::CppSQLite3Statement(const CppSQLite3Statement& rStatement)
{
      mpDB = rStatement.mpDB;
      mpVM = rStatement.mpVM;
      // Only one object can own VM
      const_cast<CppSQLite3Statement&>(rStatement).mpVM = 0;
}


CppSQLite3Statement::CppSQLite3Statement(sqlite3* pDB, sqlite3_stmt* pVM)
{
      mpDB = pDB;
      mpVM = pVM;
}


CppSQLite3Statement::~CppSQLite3Statement()
{
      try
      {
            finalize();
      }
      catch (...)
      {
      }
}


CppSQLite3Statement& CppSQLite3Statement::operator=(const CppSQLite3Statement& rStatement)
{
      mpDB = rStatement.mpDB;
      mpVM = rStatement.mpVM;
      // Only one object can own VM
      const_cast<CppSQLite3Statement&>(rStatement).mpVM = 0;
      return *this;
}


int CppSQLite3Statement::execDML()
{
      checkDB();
      checkVM();

      const char* szError=0;

      int nRet = sqlite3_step(mpVM);

      if (nRet == SQLITE_DONE)
      {
            int nRowsChanged = sqlite3_changes(mpDB);

            nRet = sqlite3_reset(mpVM);

            if (nRet != SQLITE_OK)
            {
                  szError = sqlite3_errmsg(mpDB);
                  throw CppSQLite3Exception(nRet, (char*)szError, DONT_DELETE_MSG);
            }

            return nRowsChanged;
      }
      else
      {
            nRet = sqlite3_reset(mpVM);
            szError = sqlite3_errmsg(mpDB);
            throw CppSQLite3Exception(nRet, (char*)szError, DONT_DELETE_MSG);
      }
}


CppSQLite3Query CppSQLite3Statement::execQuery()
{
      checkDB();
      checkVM();

      int nRet = sqlite3_step(mpVM);

      if (nRet == SQLITE_DONE)
      {
            // no rows
            return CppSQLite3Query(mpDB, mpVM, true/*eof*/, false);
      }
      else if (nRet == SQLITE_ROW)
      {
            // at least 1 row
            return CppSQLite3Query(mpDB, mpVM, false/*eof*/, false);
      }
      else
      {
            nRet = sqlite3_reset(mpVM);
            const char* szError = sqlite3_errmsg(mpDB);
            throw CppSQLite3Exception(nRet, (char*)szError, DONT_DELETE_MSG);
      }
}


void CppSQLite3Statement::bind(int nParam, const char* szValue)
{
      checkVM();
      int nRes = sqlite3_bind_text(mpVM, nParam, szValue, -1, SQLITE_STATIC);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding string param",
                                                DONT_DELETE_MSG);
      }
}

// Added by Roberto Cappuccio - 2005/01/27
void CppSQLite3Statement::bind(int nParam, string sValue)
{
      checkVM();
      int nRes = sqlite3_bind_text(mpVM, nParam, (char*)sValue.c_str(), -1, SQLITE_STATIC);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding string param",
                                                DONT_DELETE_MSG);
      }
}

void CppSQLite3Statement::bind(int nParam, QString qsValue)
{
    checkVM();
    int nRes = sqlite3_bind_text(mpVM, nParam, qsValue, -1, SQLITE_STATIC);

    if (nRes != SQLITE_OK)
    {
        throw CppSQLite3Exception(nRes,
                                "Error binding string param",
                                DONT_DELETE_MSG);
    }
}

void CppSQLite3Statement::bind(int nParam, const int nValue)
{
      checkVM();
      int nRes = sqlite3_bind_int(mpVM, nParam, nValue);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding int param",
                                                DONT_DELETE_MSG);
      }
}

// Added by Roberto Cappuccio - 2005/01/27
void CppSQLite3Statement::bind(int nParam, const unsigned int nValue)
{
      checkVM();
      int nRes = sqlite3_bind_int(mpVM, nParam, nValue);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding int param",
                                                DONT_DELETE_MSG);
      }
}

// Added by Roberto Cappuccio - 2005/01/27
void CppSQLite3Statement::bind(int nParam, const long lValue)
{
      checkVM();
      int nRes = sqlite3_bind_int(mpVM, nParam, lValue);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding int param",
                                                DONT_DELETE_MSG);
      }
}


// Added by Roberto Cappuccio - 2005/01/27
void CppSQLite3Statement::bind(int nParam, const unsigned long lValue)
{
      checkVM();
      int nRes = sqlite3_bind_int(mpVM, nParam, lValue);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding int param",
                                                DONT_DELETE_MSG);
      }
}

void CppSQLite3Statement::bind(int nParam, const double dValue)
{
      checkVM();
      int nRes = sqlite3_bind_double(mpVM, nParam, dValue);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding double param",
                                                DONT_DELETE_MSG);
      }
}


void CppSQLite3Statement::bind(int nParam, const unsigned char* blobValue, int nLen)
{
      checkVM();
      int nRes = sqlite3_bind_blob(mpVM, nParam,
                                                (const void*)blobValue, nLen, SQLITE_STATIC);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding blob param",
                                                DONT_DELETE_MSG);
      }
}

// Added by Roberto Cappuccio - 2005/01/27
void CppSQLite3Statement::bind(int nParam, unsigned char* blobValue, int nLen)
{
      checkVM();
      int nRes = sqlite3_bind_blob(mpVM, nParam,
                                                (const void*)blobValue, nLen, SQLITE_STATIC);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding blob param",
                                                DONT_DELETE_MSG);
      }
}

void CppSQLite3Statement::bindNull(int nParam)
{
      checkVM();
      int nRes = sqlite3_bind_null(mpVM, nParam);

      if (nRes != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRes,
                                                "Error binding NULL param",
                                                DONT_DELETE_MSG);
      }
}


void CppSQLite3Statement::reset()
{
      if (mpVM)
      {
            int nRet = sqlite3_reset(mpVM);

            if (nRet != SQLITE_OK)
            {
                  const char* szError = sqlite3_errmsg(mpDB);
                  throw CppSQLite3Exception(nRet, (char*)szError, DONT_DELETE_MSG);
            }
      }
}


void CppSQLite3Statement::finalize()
{
      if (mpVM)
      {
            int nRet = sqlite3_finalize(mpVM);
            mpVM = 0;

            if (nRet != SQLITE_OK)
            {
                  const char* szError = sqlite3_errmsg(mpDB);
                  throw CppSQLite3Exception(nRet, (char*)szError, DONT_DELETE_MSG);
            }
      }
}


void CppSQLite3Statement::checkDB()
{
      if (mpDB == 0)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Database not open",
                                                DONT_DELETE_MSG);
      }
}


void CppSQLite3Statement::checkVM()
{
      if (mpVM == 0)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Null Virtual Machine pointer",
                                                DONT_DELETE_MSG);
      }
}


////////////////////////////////////////////////////////////////////////////////

CppSQLite3DB::CppSQLite3DB()
{
      mpDB = 0;
      mnBusyTimeoutMs = 60000; // 60 seconds
}


CppSQLite3DB::CppSQLite3DB(const CppSQLite3DB& db)
{
      mpDB = db.mpDB;
      mnBusyTimeoutMs = 60000; // 60 seconds
}


CppSQLite3DB::~CppSQLite3DB()
{
    kdDebug()<<"CppSQLite3DB::~CppSQLite3DB()*****************\n";
      close();
}


CppSQLite3DB& CppSQLite3DB::operator=(const CppSQLite3DB& db)
{
      mpDB = db.mpDB;
      mnBusyTimeoutMs = 60000; // 60 seconds
      return *this;
}


void CppSQLite3DB::open(const char* szFile)
{
      int nRet = sqlite3_open(szFile, &mpDB);

      if (nRet != SQLITE_OK)
      {
            const char* szError = sqlite3_errmsg(mpDB);
            throw CppSQLite3Exception(nRet, (char*)szError, DONT_DELETE_MSG);
      }

      setBusyTimeout(mnBusyTimeoutMs);
}


void CppSQLite3DB::close()
{
      if (mpDB)
      {
            sqlite3_close(mpDB);
            mpDB = 0;
      }
}


CppSQLite3Statement CppSQLite3DB::compileStatement(const char* szSQL)
{
      checkDB();

      sqlite3_stmt* pVM = compile(szSQL);
      return CppSQLite3Statement(mpDB, pVM);
}


bool CppSQLite3DB::tableExists(const char* szTable)
{
      char szSQL[128];
      sprintf(szSQL,
                  "select count(*) from sqlite_master where type='table' and name='%s'",
                  szTable);
      int nRet = execScalar(szSQL);
      return (nRet > 0);
}


int CppSQLite3DB::execDML(const char* szSQL)
{
      checkDB();

      char* szError=0;

      int nRet = sqlite3_exec(mpDB, szSQL, 0, 0, &szError);

      if (nRet == SQLITE_OK)
      {
            return sqlite3_changes(mpDB);
      }
      else
      {
            throw CppSQLite3Exception(nRet, szError);
      }
}


CppSQLite3Query CppSQLite3DB::execQuery(const char* szSQL)
{
      checkDB();

      sqlite3_stmt* pVM = compile(szSQL);

      int nRet = sqlite3_step(pVM);

      if (nRet == SQLITE_DONE)
      {
            // no rows
            return CppSQLite3Query(mpDB, pVM, true/*eof*/);
      }
      else if (nRet == SQLITE_ROW)
      {
            // at least 1 row
            return CppSQLite3Query(mpDB, pVM, false/*eof*/);
      }
      else
      {
            nRet = sqlite3_finalize(pVM);
            const char* szError= sqlite3_errmsg(mpDB);
            throw CppSQLite3Exception(nRet, (char*)szError, DONT_DELETE_MSG);
      }
}


int CppSQLite3DB::execScalar(const char* szSQL)
{
      CppSQLite3Query q = execQuery(szSQL);

      if (q.eof() || q.numFields() < 1)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Invalid scalar query",
                                                DONT_DELETE_MSG);
      }

      return atoi(q.fieldValue(0));
}


CppSQLite3Table CppSQLite3DB::getTable(const char* szSQL)
{
      checkDB();

      char* szError=0;
      char** paszResults=0;
      int nRet;
      int nRows(0);
      int nCols(0);

      nRet = sqlite3_get_table(mpDB, szSQL, &paszResults, &nRows, &nCols, &szError);

      if (nRet == SQLITE_OK)
      {
            return CppSQLite3Table(paszResults, nRows, nCols);
      }
      else
      {
            throw CppSQLite3Exception(nRet, szError);
      }
}


sqlite_int64 CppSQLite3DB::lastRowId()
{
      return sqlite3_last_insert_rowid(mpDB);
}


void CppSQLite3DB::setBusyTimeout(int nMillisecs)
{
      mnBusyTimeoutMs = nMillisecs;
      sqlite3_busy_timeout(mpDB, mnBusyTimeoutMs);
}


void CppSQLite3DB::checkDB()
{
      if (!mpDB)
      {
            throw CppSQLite3Exception(CPPSQLITE_ERROR,
                                                "Database not open",
                                                DONT_DELETE_MSG);
      }
}


sqlite3_stmt* CppSQLite3DB::compile(const char* szSQL)
{
      checkDB();

      char* szError=0;
      const char* szTail=0;
      sqlite3_stmt* pVM;

      int nRet = sqlite3_prepare(mpDB, szSQL, -1, &pVM, &szTail);

      if (nRet != SQLITE_OK)
      {
            throw CppSQLite3Exception(nRet, szError);
      }

      return pVM;
}


////////////////////////////////////////////////////////////////////////////////
// SQLite encode.c reproduced here, containing implementation notes and source
// for sqlite3_encode_binary() and sqlite3_decode_binary()
////////////////////////////////////////////////////////////////////////////////

/*
** 2002 April 25
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains helper routines used to translate binary data into
** a null-terminated string (suitable for use in SQLite) and back again.
** These are convenience routines for use by people who want to store binary
** data in an SQLite database.  The code in this file is not used by any other
** part of the SQLite library.
**
** $Id: cppsqlite3.cpp,v 1.1 2005/05/24 14:33:34 rcappuccio Exp $
*/

/*
** How This Encoder Works
**
** The output is allowed to contain any character except 0x27 (') and
** 0x00.  This is accomplished by using an escape character to encode
** 0x27 and 0x00 as a two-byte sequence.  The escape character is always
** 0x01.  An 0x00 is encoded as the two byte sequence 0x01 0x01.  The
** 0x27 character is encoded as the two byte sequence 0x01 0x03.  Finally,
** the escape character itself is encoded as the two-character sequence
** 0x01 0x02.
**
** To summarize, the encoder works by using an escape sequences as follows:
**
**       0x00  ->  0x01 0x01
**       0x01  ->  0x01 0x02
**       0x27  ->  0x01 0x03
**
** If that were all the encoder did, it would work, but in certain cases
** it could double the size of the encoded string.  For example, to
** encode a string of 100 0x27 characters would require 100 instances of
** the 0x01 0x03 escape sequence resulting in a 200-character output.
** We would prefer to keep the size of the encoded string smaller than
** this.
**
** To minimize the encoding size, we first add a fixed offset value to each
** byte in the sequence.  The addition is modulo 256.  (That is to say, if
** the sum of the original character value and the offset exceeds 256, then
** the higher order bits are truncated.)  The offset is chosen to minimize
** the number of characters in the string that need to be escaped.  For
** example, in the case above where the string was composed of 100 0x27
** characters, the offset might be 0x01.  Each of the 0x27 characters would
** then be converted into an 0x28 character which would not need to be
** escaped at all and so the 100 character input string would be converted
** into just 100 characters of output.  Actually 101 characters of output -
** we have to record the offset used as the first byte in the sequence so
** that the string can be decoded.  Since the offset value is stored as
** part of the output string and the output string is not allowed to contain
** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27.
**
** Here, then, are the encoding steps:
**
**     (1)   Choose an offset value and make it the first character of
**           output.
**
**     (2)   Copy each input character into the output buffer, one by
**           one, adding the offset value as you copy.
**
**     (3)   If the value of an input character plus offset is 0x00, replace
**           that one character by the two-character sequence 0x01 0x01.
**           If the sum is 0x01, replace it with 0x01 0x02.  If the sum
**           is 0x27, replace it with 0x01 0x03.
**
**     (4)   Put a 0x00 terminator at the end of the output.
**
** Decoding is obvious:
**
**     (5)   Copy encoded characters except the first into the decode
**           buffer.  Set the first encoded character aside for use as
**           the offset in step 7 below.
**
**     (6)   Convert each 0x01 0x01 sequence into a single character 0x00.
**           Convert 0x01 0x02 into 0x01.  Convert 0x01 0x03 into 0x27.
**
**     (7)   Subtract the offset value that was the first character of
**           the encoded buffer from all characters in the output buffer.
**
** The only tricky part is step (1) - how to compute an offset value to
** minimize the size of the output buffer.  This is accomplished by testing
** all offset values and picking the one that results in the fewest number
** of escapes.  To do that, we first scan the entire input and count the
** number of occurances of each character value in the input.  Suppose
** the number of 0x00 characters is N(0), the number of occurances of 0x01
** is N(1), and so forth up to the number of occurances of 0xff is N(255).
** An offset of 0 is not allowed so we don't have to test it.  The number
** of escapes required for an offset of 1 is N(1)+N(2)+N(40).  The number
** of escapes required for an offset of 2 is N(2)+N(3)+N(41).  And so forth.
** In this way we find the offset that gives the minimum number of escapes,
** and thus minimizes the length of the output string.
*/

/*
** Encode a binary buffer "in" of size n bytes so that it contains
** no instances of characters '\'' or '\000'.  The output is
** null-terminated and can be used as a string value in an INSERT
** or UPDATE statement.  Use sqlite3_decode_binary() to convert the
** string back into its original binary.
**
** The result is written into a preallocated output buffer "out".
** "out" must be able to hold at least 2 +(257*n)/254 bytes.
** In other words, the output will be expanded by as much as 3
** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
**
** The return value is the number of characters in the encoded
** string, excluding the "\000" terminator.
*/
int sqlite3_encode_binary(const unsigned char *in, int n, unsigned char *out){
  int i, j, e, m;
  int cnt[256];
  if( n<=0 ){
    out[0] = 'x';
    out[1] = 0;
    return 1;
  }
  memset(cnt, 0, sizeof(cnt));
  for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
  m = n;
  for(i=1; i<256; i++){
    int sum;
    if( i=='\'' ) continue;
    sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
    if( sum<m ){
      m = sum;
      e = i;
      if( m==0 ) break;
    }
  }
  out[0] = e;
  j = 1;
  for(i=0; i<n; i++){
    int c = (in[i] - e)&0xff;
    if( c==0 ){
      out[j++] = 1;
      out[j++] = 1;
    }else if( c==1 ){
      out[j++] = 1;
      out[j++] = 2;
    }else if( c=='\'' ){
      out[j++] = 1;
      out[j++] = 3;
    }else{
      out[j++] = c;
    }
  }
  out[j] = 0;
  return j;
}

/*
** Decode the string "in" into binary data and write it into "out".
** This routine reverses the encoding created by sqlite3_encode_binary().
** The output will always be a few bytes less than the input.  The number
** of bytes of output is returned.  If the input is not a well-formed
** encoding, -1 is returned.
**
** The "in" and "out" parameters may point to the same buffer in order
** to decode a string in place.
*/
int sqlite3_decode_binary(const unsigned char *in, unsigned char *out){
  int i, c, e;
  e = *(in++);
  i = 0;
  while( (c = *(in++))!=0 ){
    if( c==1 ){
      c = *(in++);
      if( c==1 ){
        c = 0;
      }else if( c==2 ){
        c = 1;
      }else if( c==3 ){
        c = '\'';
      }else{
        return -1;
      }
    }
    out[i++] = (c + e)&0xff;
  }
  return i;
}

Generated by  Doxygen 1.6.0   Back to index